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ABSTRACT

This paper concerns the existence of steady solutions to the Navier-

Stokes equations in a bounded domain n C R - The condition of solenoidality

for the velocity field imposes a necessary condition on the boundary data.

For a certain class of symmetrical domains, ; show that this necessary

condition implies the existence of a solution to the problem. The method

consists of proving a priori bounds on solutions by assuming the contrary,

rescaling the equations, and then arriving at a solution to the steady Euler

equations in the limit. Examination of this equation leads to the desired

contradiction. After one has suitable bounds on any solutions, one uses the

Leray-Schauder theoremg Jprove existence.

In addition, -w remark on the problem of a general bounded domain

7 1 and suggest how certain maximum principles might yield the expected

results. _ _

AMS (MOS) Subject Classifications: 35Q10, 76D05, 35B50I
Key Words: Navier-Stokes equations, a priori bounds, maximum principles

I Work Unit Number I - Applied Analysis
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SIG41FICANCe AND EPLANATION

The steady Navier-Stokes equations model the flow of a viscous,

incompressible fluid in some region fA. With u and p denoting the

velocity and pressure, respectively, one has

-VAU + (u*V)u - f - Vp/ in 0
V-u on 3

u - g on •

and the problem is to solve for (u,p) for prescribed constant viscosity

V > 0, external force f, and boundary data g. The boundary data is not

arbitrary but satisfies the necessary condition

m
f. v.u I fr[  ;'ni on)

where r i denote the components of 30 and nL denotes the outward

normal. Condition (**) merely states that the total outflow across 30 is

zero. If one imposes the stronger condition of no outflow across each

boundary component:

f i elioni = 0, i 1,...,m , C"')
iii

then classical theory going back to Leray fifty years ago ensures that (M) has

a solution for any v > 0 and any suitably smooth function f.

If (***) is replaced by the necessary condition (**), the standard

methods only give the existence of a solution when v is sufficiently

large. In this paper, we show that the necessary condition on g yields a

solution (up) to CM) in a certain class of domains 0 in the plane. We

also remark on the case of a general domain in the plane, and show how certain

maximum principles are applicable.

The responsibility for the wording and views expressed in this descriptive
summary lies with NRC, and not with the author of this report.

Bad ....... -



Z ISTRNCE OF SOLUTIONS TO THE NOWHONOGENEOUS
STEADY R4AI-TER-STOKES EZQUATIONS

Charles J. Aick

I* INTRODUCTION

In this paper we consider the steady Navier-Stokes equations in a bounded

domain (an open, connected set) A R2 z

-V Au + (u-V)u - f - Vp (1.1)
0 ) in 0

Vou 0 , (1.2)

u g on 0 • (1.3)

We assume that 30 is infinitely differentiable, f e CO(0 , R ) ,

2
g e c (3 R ), and V >0. The problem is to find a velocity field0

u - (u,,u2 ) and a pressure p satisfying (1.1) - (1.3). The boundary data

g is not arbitrary, but satisfies the compatability condition

ffl0 divu. r gioni , (1.4)

where the r are the components of 30 and ni denotes the outward normal

to r*V we shall assume'throughout this paper that (1.4) holds. Our

intention is to prove the existence of a solution (u,p) to (1.1) - (1.3) for

any g satisfying the necessary condtion (1.4). The results will hold for a

2
certain class of domains 0 C R , and we shall remark on the general case in

section 3.

If one replaces (1.4) by the stronger condition

fr i O, i - 1,...,m (1.5)

then the existence of a solution (u,p) for any V > 0 is classical (at

4Department of Mathematics, University of Chicago, Chicago, IL.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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least for domains a 3nr, n - 2 or 3) and goes back to the fundamental work

of Leray [9] (see also (2], [81, [12]). Condition (1.5) has been assumed in

the recent work of Fbias and Temam (31, (41, Saut and Tmesm (10], and Temam

(11], (12] on properties of solutions to the steady Wavier-Stokes equations.

As ve shall see in section 2, the main advantage of (1.5) is that it allows

the boundary data g to be extended to A as a curl; more precisely, there

is a smooth function * defined on 5 such that V x * - g on 311. One

then mollifies * near to 3A and obtains a priori bounds suitable for the

Leray-Schauder theorem.

If (1.4) holds but not (1.5), then one cannot extend g as a curl to

0. However, standard theory [8), (12] ensures the existence of a function

g e c"( R ) satisfying the Stokes equations:
-v° Ag- "q n ,(1.6)

0g- V ) in A
Vag 0 , (1.7)

g - g on 3 . (1.8)

If we set u - 9+v, then (1.1) - (1.3) is equivalent to solving the problem

-V Av + (gOV)v + (v.V)v + (v-V)g - f - Vp ,' S (1.9)

v 0 (1.10)

v - 0 on 30 , (1.11)

where f - f-(g.V)g is fixed and we absorbed the q term into p. Let
- 2

R(R) denote the completion of [v - (vlv2 ) 6 C(0.3 ) : div v 0 in )}

in the Dirichlet norm:

<vv>f- Ivl2 2

The problem of solving (1.9) - (1.11) for (v,p) is equivalent to finding a

(weak) solution v of the following equations

-2-
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Vo0<,v> H + fa **(g.V)v + f a.(v.V)v + f$ a.(v.V)g

(1.12)
of for all # ()

In the usual way [8, (12], this is equivalent to solving an operator equation

V v - AV + F ( 1.13)

where F e H(Q) and A is a compact map of H(R) into itself. Here P

and A are defined by the Riess representation theorems

fn *.(qV)v + fa *.(v.V)v + fa .(v.Vq) -<#,Av>n

and

fn *+--<,~

for all # e H(Q). After one has found a solution v e H to (1.13), it is

then standard to recover a smooth solution (pv) of (1.9) - (1.11).

For each V) V , leto

S(v) - {v e H(O) : vv - Av + F) • (1.14)

Note that v e S(v) if and only if there is a pressure p such that (g+v,p)

satisfy (1.1) - (1.3) with V replaced by V. We shall prove in Theorem 2.1
- O

that S(V) is non-empty if v exceeds some critical value V and that

lvi H - const./V, V ) V * (1.15)

Our main result in section 2 is the following estimate:

sup - sup lvi < - . (1.16)

ve[vo,V] veS(v)

This ensures that all solutions of the equation

v - (Av + F) , (1.17)

A e [0,11, are uniformly bounded in H(A), and so the existence of a

solution to (1.13) follows by the Leray-Schauder theorem. We shall prove

* (1.16) by assuming it is false, and then deriving a contradiction. Although

(1.15) holds for bounded domains in R or 3 , we have only succeeded in

proving (1.16) for a certain class of domains QC 3 and data g and f.

-3-



Since (1.4) and (1.5) are the same for m - 1, we shall restrict attention at

all times to domains with m ) 2 boundary components.
2

DEFINITION: A bounded domain fl R 2 is said to be admissible if

(a) 00 is of class C , (b) 3A consists of m p 2 components ri p (c)

is symmetric about the line {x2 - 01 and (d) each component r, intersects

the line (x2 = 0).
22

A function h = (h1 oh2 ) mapping a or 311 into R is said to be

symmetric about the line {x2 = 0) if h1  is an even function of x2

while h 2 is an odd function of x 2

DEFINITION: A pair (f,g) is said to be admissible data if (a)

f e C( + R2), (b) g;e C3a + R2), and (c) f and g are symmetric about

the line {x2 = 0}.

If 0 is an admissible domain and (f,g) is admissible data, it is

natural to seek a solution (u,p) to (1.1) - (1.3) with u symmetric about

{x2 = 01; the corresponding pressure p will be an even function of x2.

The main result of this paper is the following theorem which is proved in

section 2.

2
THEOREM 1.1. Let A e R be an admissible domain and let (f,g) be

admissihle data. Then for every v 0 > 0 there exists a solutiono

(u,p) e c'fl * R2 ) x C (Q + R) of (1.1) - (1.3). The function u is

symmetric about {x = 01 and the pressure p is an even function of x2.~2

Acknowledgement. I am indebted to Professor J. Heywood for bringing this

problem to my attention. In addition, he strongly suggested that the proof of

(1.16) might follow by assuming the contrary and deriving a contradiction.

-4
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2. A PRIORI DD

Before proceeding to the proof of Theorem 1.*1, we show 'how the condition

(1.5) leads to solutions of (1.1) - (1.3) for any '1 0 0. ASSWm for the

moment that A is a bounded domain in SP' (n - 2 or 3) with smooth boundary

and f and g are smooth on 01 and 30, respectively. Equation (1.5)

allows one to extend the boundary data g to A as a curl, g - Vx*i in0

and g - ; on 32 (2], (8], [12). For each e > 0, let p(esc) denote a

suitable mollifier [21 p. 209], [8; p. 1081, [121 p. 175] with p B near to

30 and with support in an e-neighborhood of 30. Upon choosing e

sufficiently small and setting ge - Vx(ij(*,c)l*)), one has (21 p. 210], t8;

p. 109], [121 p. 175]

ifn g *(V.V)vl -C conat. Clvi2 for all v e HM0 (2.1)
0£ H

and the constant is independent of c and v. one seeks a solution of (1.1)

-(1.3) of the form u -gr + v, so that v is to satisfy (1.9) - (1.11)

(with g replaced by g and f replaced by f + V Ag ), or, equivalently,
C~ £

(1.13). with SWv as in (1.14), it suffices to choose c- such that

sup sup lVI < -- if v e SMv, then setting *-v in (1.12) yields
v~lv ves(v)

0

2 _v _f-, v. (v.V)g,+j ~
H a 0o

M fn g E.(V*V)v + fAve f (2.2)

cconet. clvi 2 + cont% IIIH e 2(A

if we chc-se e such that const. c 4 v /2, then

2 conet. - 2(23
I H 4CC v 2(23

for all v e S(v if v ;0 V 0 It then follows from the Leray-Schauder

theorem that a solution to (1.13) exists.

-5-
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The key point in the analysis above was the representation g = V x

which allowed us to put a mollifier with small support near 30 inside the

curl. The form of g. led to (2.1) which was the key step in proving (2.3)

from (2.2). If one drops the condition (1.5) (but still has the necessary

condition (1.4)), then it is not clear how to proceed. One might set

[- (g e c( R Rn ) V-g 0 in S and g - g on 3) and set
f12g- (v*Vlv

=i nf max 
2

geM VeH(Q) IVI2

If P < V , then one gets a priori bounds for v e S(V), v > v , by (2.2).

When g satisfies (1.5), then (2.1) gives P - 0. Unfortunately, in general

one will not have p < v , and so a different approach must be taken.0

The following theorem gives the existence of a unique solution to (1.1) -

(1.3) if V is sufficiently large.

THEOREM 2.1. Let 2 be a bounded domain in Rn (n - 2 or 3) with M

of class C , and let feC ( + n ) and g8 Ce( * Rn). Then there

exists ; > 0 such that (1.1) - (1.3) has a solution (u,p) e c (2 + R) x

c(5 + R) for all V > ;. In addition, (u,p) is unique ur to an additive

constant for p.

Proof. Let g be as in (1.6) - (1.8). Now

If. g-(v.V)vl 4 const. Igi lvi c = v e H(0)
L(Q) H H

and the constant C is independent of v. Let v be any fixed number

I greater than 2C. We claim that (1.1) - (1.3) has a solution for any V .

Indeed, if V is so given, then it suffices to solve (1.13). If v e S(,o

then (2.2) gives

'1v2 =-2ll v
VI 12 fnq.(V*V)v + f v -C C lvl H + const f 2 IVHL (l

.4 whence

-6-
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lV1 < 1ont. 1f (2.4)R V L2 (g3)

for all v )v This estimuate gives an a priori bound for solutions to
0

(1.*17), and so existence follows from the Leray-Schauder theorem.

A If (u,p) and (wq) satisfy (1.1) - (1.3), then a calculation yields

V lu-wI 2 _fq wo((U-w)*V) (u-w)

< const. w L 4(a lu-wiL4a iu-Iti

< const. 1u-wI 2

by (2.4). The constant is independent of v , and so if ; is sufficiently

large, then v ', ; ensures a unique solution of (1.13). The existence of a

pressure p and the regularity of (u,p) is standard [81, (12], q.e.d.

Throughout the rest of this section, we shall assume that A C a3 is an

*admissible domain and (f,g) are admissible data. Let g be a solenoidal

extension of g to fl as in (1.6) - (1.8); since g and 0 are symmetric

about (x 2=0), the extension g may be taken to be s ymmetric. We seek a

solution u of (1.1) - (1.3) of the form u -g~v, where v e H(Q) and v

is to be symmsetric about [x 2= 0). Let ft (0) denote the closed subspace of

H(Q) consisting of velocity fields which are symmetric about (x 2=01. it

is a Hilbert space with the previous inner product <9,*> . The problem of
H

solving (1.1) - (1.3) is equivalent to finding v e H (0) satisfying

V 0v - Av + F, where F e R (0) and A is a compact map of H.into

itself. if we set

Swv - {v e H (a) :vv - Av + F)

then the proof of Theorem 2.1 ensures that S(V is non-empty for all V ;b v

and that (1.15) holds. In order to prove (1.16) (and thereby Theorem 1.1), we

shall assume the contrary and derive a contradiction.

-7-
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Let v n6 S(v n with Ivn I H + as n + 40. Without loss of generality

we may assume that V1 n +v e (v, ,Vl as n . .Since vn e s(vn ), it

satisfies (1.12) with v0 replaced by V n* Standard theory gives the

existence of a pressure p n (normalized by fn pn 0) such that

- V nAV n + (gov)v n+ (Vn *V)q + (v n*V)v n f - Vpn
(2.5)

=f -(gov) - Vp nin 11

If we set u g+ V n then

-v nAu n+ (u noV)un = f-Vp nin 0Z

-V

and we have absorbed the term - V nq -~ Vq into the Pn term. Define
0

u n= u n/IV nIH v n v n/Ivn I Hand pn =p /t I

Without loss of generality, we may assume that v n~ v in H s(ai) and

V n V in 12(fl), g e [1,-). The esti-ates of Cattabriga [1), (12] applied

to (2.5) yield

Ipn'lW ,q ( const.[lfI LQ + I(g.V)v n+ (v noV)v n+ (V n*V)gt q~)

const.11 + IV 1 2

for any a e (1,2). In particular, pn is hounded in W (0), q 8 (1,2),

- - I~a p.

independently of n, and so p n-p in W (nl), q e (1,2), and pn + p in

L0(n), q e [i,-). If we multiply (2.5) by v n' integrate over S0, and then

divide by IV 1H2 there results

n H'

p. 2
Since v n v in L (nl), we may take the limit of n + in (2.6):

V =i go(veV)v (2.7)

If we multiply (2.5) by a fixed e8:45n + R) integrate over 0, divide

by Iv 1I and let n + there results
n H

f. -f e O,(1 2 (2.8)



Since w as arbitrary, it follows that (v,p), with v e s (ni), is a weak

solution of the steady Ruler equationsi

(Vv -Vp almost everywhere in Ai (2.9)

Recall that the solenoidality of v is immiediate from its membership in

H (i) while v - 0 on an (in the sense of a trace) for the same reason.

- - 1,q . 5since v e a (ni) and p e w (nl), q e (1,2), it follows that (;.V);,

Vp e Lq(f), q e (1,2), and so (2.8) actually holds for all e~ Lr (a)l,

r e (2,-). in particular, setting *g yields

fn g (v.V)v - -fn q-V - -fn div(cp

m (2.10)

The integration by parts in (2.9) is justified since p e w I (fi) has a well-

defined trace on 39.

To motivate what is about to follow, we argue formally for the moment.

Since ; e H 8(Al), we have ; 0 on 3fn in the sense of a trace, and so

(2.9) suggests that p is a constant Cion each component ri of an. If

we could show that these constants are all equal to, say, C, then (2.10)

would give
m

flgo (V )-V - C 1 7~ g f 'nii 0 (2.11)

by (1.4). However, (2.7) shows that (2.10) is impossible, and so we will have

the desired contradiction. in the following two theorems, we justify these

formal arguments.

THEOREM 2.2. The trace of p on r is a constant Ci

almost everywhere on r1'

Proof. Let i be arbitrary and set r - r Let z e r and change to
£ o

a new orthogonal coordinate system (x Vx 2) centered at z 0 with the

x 2-axis pointing along the inner normal to r' at z 0. We write

-9-



(-__ _). For ,mall C > 0, the boundary component r is given
3;1ax 2x1X ,x2 -

locally by x2 - h(xI), x1 e(-,), with h e c. Let 6 0 be

sufficiently mall such that

A- A(,6) - (X1,X2) : xl e (-,e), x2 e (h(xI), h(x1) + 6)) £ .

NoW

______ ___ I(x2.12)
_h(_+_ h-21)2 ~2 1/2

< cost.(f~cf~"tVvl ) lvli ( const.lIvl - conet.
h(x I) H

vhere ye have used the standard estimate

dx x cn..(fP) f dx I) V

Aa+°( - ) d 2  2 dx 2  (2.13)

1 1-
hx-

for functions w e C [a,a+6 ] which vanish at x2 - a. Since H(M) is the

completion of CO  functions, one first uses (2.13) to prove (2.12) for such

functions and then takes the limit.

since (v-V)v - -Vp, it follows from (2.12) that

iA(f,)IVPI - o(6) as 6 * 0

If * 8 C;(-€,e), then

fA(C,6) #'(Xl)p(Xl'X 2 )dxldx 2 -f f.0 *'(Xl);(Xl'h(X1 ) + x2 )dx 2 dxl

.- fC 6 - j -
"- *#(Xl) 10 (X 1 'h(XI)+X 2 ) + h'(X) (X 1 'h(XI)+*x2 )}dx 2 dx

- o(6) as 6 + 0

If we divide both sides of this equation by 6 and let 6 * 0, there results

- *'(x )P(X,h(x ))dx 1  0 for all + e C (-C,C)

It follows that p is a constant on F almost everywhere. g.e.d.

-10-



Theorem 2.2 did not use the symmetry of 0, but we shall need it for

Theorem 2.3. We now introduce some notation for the boundary components r i

Without loss of generality, we may assume that r I is the 'exterior'

componentl that is, a c int r Since 0 is admissible, the set

[x 2= o) n r i consists of two points (a,,O) and (Bi,O) with, say,

a i < 8 . We may label the components so that a1 < a B2 .-. <a < Bt B1

Note that the sets {(x 1 ,0) : a I  x1 < a 2 ,2 {(x 1 0 ) t 0 < x 1  ae 1+,

i 2,...,m-1, and ((x1 1 0): B < x < B1 }  are all contained in 2.

THEOREM 2.3. The constants Ci  in Theorem 2.2 are all equal: Ci W C,

I ... .

Proof. We shall prove that C1 - C2  since the other cases are

similar. Near to the point (al,0), the component rI has the form

{(h (x 2 ),x 2 ) x 8 (-X,6)) for some small 6 > 0. Here h I e c and

hl(0) - aI. Similarly, r 2 has the form {(h 2(x 2),x 2 ) : x2 e (-6)) near

to (a ,0). set A = A(6) - ((x x 2 ) : x e (h (x 2),h 2(x 2)), x2 e (0,6), so

that A(6) C for all small 6. Define the total-head pressure

2 _I1-2 (v 1 (2 + -;. ,;2 ; + vI +v2, where 1; 2 since (v)v -Vp

(almost everywhere) in n, we have

av ~av2
+j. iL. La +; 2ax I x I Iax 2 ixI

(2.14)

3VI DVa av I+ 3v2
1 T 2v xi 2 ) 3x , v2x

= -_v2  almost everywhere in 0 ,

av av
where 1 _ 2 denotes the vorticity. Integrating this equation over

I A(6) yields

-11-d111 +.. +
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fo{p(h 2 (x 2 ),x 2 1 - P(h 1 (x 2 ),x 2 ))dx 2  6 8(C 2  C 1)

- -A(6) 2

or, equivalently

Ic 2 - C11 - IJA( 6 )v 2 "1 . (2.15)

If we extend v 2  to R X (0,6) as zero outside A(6), then

I 2 (X 1 ,x2 12 i2(xlx2 2

fA8 2 - 2 2 1

where we have used (2.13) and the fact that v2(x1,)-0b ymty h

22 ' -0bsymty Th

use of these estimates in (2.15) give

1~ IV-122 2

whrewehveusd(213 adth fc tha 2(x6) ysymty h

x 2ICf i I - U- UAA16

1 2 2 0))x2
( 46 2 / 1r r2 ) - 2 ) fv ,2 )2

+ 0 as 6 + 0

Hence, C1  C2. a.e.d.

As noted before, the use of Theorem 2.3 and (1.4) in (2.10) gives a

contradication and so (1.16) holds. The Leray-Schauder theorem then gives the

existence of a solution v e H (A) to (1.13), and the existence of aS

pressure p and the regularity of (u,p) following in a standard way.

II
3. REMARKS ON THE GENERAL CASE

We now consider the problem of solving (1.1) - (1.3) in a general bounded
2

domain A c 1 2 We assume 30 is smooth and that it consists of 3 > I

components. Furthermore, f and g are smooth functions from 0 and 30,

-12-
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respectively, to it2  In order to prove the existence of a solution, it

suffices to prove (1.16). If we assume this is false, then there is a

sequence wJ.th v n S(vn ) and Iv n I H * - as n -*. Setting v - y vn/Inl

and py - p/ yields v -- v in H(Q), v * v in (1)), q e [1,-),

pn - p in V lq(0 )I q e (1,2), and Pn in L (0), q e [1,m). The pair

(v,p) is a weak solution of the steady Ruler equations (v-V)v - -Vp in 0.

Theorem 2.2 shows that p is a constant C1  on each component ri  of an.

In order to derive a contradiction from (2.7), it suffices to show that the

C2 are all equal.

Theorem 2.3 showed that if v e H (0) is a weak solution of the steadys

Euler equations in an admissible domain n, then the corresponding pressure

p has the same constant value on each of its components. If we could show

for general n that

v e H(Q) and (VV)v - -Vp in A implies p = C on i i 1,...,m , (3.1)

then we would have solved (1.1) - (1.3). Unfortunately, (3.1) is not true as

the following simple example shows.

EXAMPLE 3.1. Let 0 - {(r,e) : i < r = 2 + x2 < R, 0 4 e 4 2w) and
1 2

let * e C I[1,R) with #'(1) - *'(R) - 0 and * e L 2(1,R). Define

A-) - -A- (r), - (r)) ( 2 )(r) X *'(r)) e H(O) and definev(r,B) ax 2 ax1 r r

;(r) - r (,,(w)) 2/w dw , r e [1,R]

Then (v,p) is a weak solution of the steady Ruler equations in A:

(vV)v - -Vp

Vj:v

I v-0 on an

If i s not identically zero, then the pressure at r R will be

strictly positive, and so (3.1) does not hold. This example suggests that the

( approach of section 2 is only practical when one considers symmetrical domains

-13-
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Qand symmetrical solutions ; e H a(0). condition (3.1) is actually too

strong a requirement since ; is not just any solution of the Ruler

equations. but is a certain limit of solutions to the steady savier-Stokes

equations. For definiteness, we shall assume throughout the rest of this

papr tat0 is the annulus of Example 3.1 and f 0. The boundary data

g is assumed to satisfy (1.4) but we drop the demand of symmetry about

[x 2 = 0). Recall that we begin by fixing some V 0> 0, let S(v) be as in

(1.14), and then try to prove (1.16) by assuming the contrary and deriving a

contradiction. Let v ft [e rvJ be such that lvnIH + W where

V n = u n - g. Equations (1.1) - (1.3) lead to certain maximum principles; more

precisely, if 0 =p, + -1 Iu 12 denotes the total head pressure, then
nn 2 n

vA# - u OV -W2 in A (3.2)
n n n n n n

nhr w x n a-~ (u) denotes vorticity. Equation (3.2) yields a

one-sided maximum principle for 4 : if A is an open subset of 11, then

n takes its maximum on A at aA. This maximum principle was used by

Gilbarg and Weinberger [5), [6) to study the difficult problem of steady

2 -
Wavier-Stokes flow past a body in the plane. Define 9 n 9 /IV nI = pn +

2 IV n+g/IV nI HI ,and note that ; satisfies a one-sddmxmmpicpe

Since (v p n) converge in a certain sense to a solution (v,p) of the

steady Euler equations, one might expect that the corresponding total head

; _ ; I 1-2
pressure 9=p+jIF satisfies some (weak) version of a one-sided maximum

principle. We prove this is true in the following theorem and the remarks

thereafter.

THEOREM 3.2. Let s,t denote arbitrary numbers satisfying

1 < a < t < R, and set A - {(r.0) : < r < t, 0 4 6 4 2w). Then there exist

4sequences with s8 + 9 and t~ 4 t as J + such that (

;(t1 * e c(0,2w1 and

-14-
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ego sup i(x,y) 4 max i(r,O) , j " 1,2,...
(x,y)eA r-s ,t

ee[0,2w]
Proof. For r e (1,R) define

x W fr 2 i~,O rOI jOrO 7.OnO d

and note that

f zn(rdr ( const.-4 I IV(- n I

1 1,
where + I and a 1,2). Since , are bounded in vI'l),

P q n

q e (1,2), we may assume that 0 * * in Lq(A) for all q e [1,-). in
1

particular, z + 0 in L (1,R) as n + m. Since z + 0 in measure, an n

suitable subsequence converges to zero uniformly almost everywhere. Given any
m

point s e (1,R), we can find a sequence (s i such that

si + s as i. and zn(s) + 0 as n m (3.3)

Define

5'(r) 2W 0 n(r, OL d O

and similarly for H(r). Since n - in W ,q(a), q e (1,2), standardn

results for traces show that H - R + 0 in C[1,R] as n* . Let i ben

fixed and let 8 e (0,2w] be such thatn
@nlt~e) -(si,e) -Hs l) - Hisi) •

n (Si' ion inai ~
NoW

max 10n(Sipe) - 4(stlell
9eo,2u]

- -2 2w3 2I n (s ,e) -a (Sien )I + I 0 (0(s, ) - *(e e )) de (3.4)

= n - H(Si)12 + 2zn(S) 0 as n* .

n

A similar result holds for a suitable sequence t + t. Since * satisfies

a one-sided maximum principle in A, we have

" l~r-15-



*n(x,y) aX n (x,y) e &

'ee~o,2w)

If we let n + and use (3.4), then the theorem is proved. q.e.d.

Remark. A similar version of Theorem 3.2 holds for arbitrary open sets

A with A c n. One can find open sets {AJ- with (i A of class C

(ii) A C A C A D, (ii) 0 is continuous on aAj (iv) Ak C A if

k > J, (v) A + A in the sense that A = int n Aj, and such that

ess sup 4 C max 4, j - 1,2,...
A Aj

Example 3.1 gives a whole family of solutions to the steady Euler

equations in n for which the pressure is not the same constant value on

30. We claim that such flows cannot arise as the limit of unbounded solutions

to (1.1) - (1.3) with f S 0 and v replaced by v . Indeed, let * be as
o n

in Example 3.1, and note that the total head pressure is only a function of

r:

fr*((2w w+ 1*#r1
f(r) - '(w)2 /w d + 2t*4(rN 2 , r e e1,R)

Since *" e L2 (1,R) with () - *'(R) = 0 (which is equivalent to

v (y,-*X ) e H(n)) we know that 4 is (Hblder) continuous on [1,R].

Assume for the moment that ; satisfies Theorem 3.2 and *' is not

identically zero on 11,R]. Then ; takes its maximum on any interval

Is,t], with I s < t C R, at one or both of the endpoints. Since

4J 4(O) - 0 and 4 > 0 on 11,R], it follows that 4 is non-decreasing on

1,R]. A calculation gives

I W - 4(a)- ft (wi'(w))-dw

for any st e [IR] whence

0 < *'(w)(w'(w))' almost everywhere on (1,R) . (3.5)

Since 4' is not identically zero on (t,Rj by hypothesis, there exists

some wo e (1,R) such that *'(w) 0. Let B denote the largest open

-16-
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interval containing wo  much that *' i 0 on B. Since *'(1 - *'(R) - 0,

we know that *' vanishes at the endpoints of B. On the other hand, (3.5)

says that .(v'(w))' is one signed (almost everywhere) on B. The only

possibility is that (%*'(w))' - 0 on B, whence * - 0 on B. This is a

contradiction, and so the non-trivial solutions (v,p) of Example 3.1 do not

satisfy Theorem 3.2. Therefore, it is natural to ask the follow question:

2
Let 0 c R denote an annulus and let (v,p) be a weak

solution of the Ruler equations (v.V)v - -Vp in 9 with

1 - 2
v e 5(n). if 0 - p + 2 10 satisfies Theorem 3.2 and the

remark thereafter, then does Pt 1  R- or, equivalently,

does 1 - r-R?

There are other maximum principles associated with (1.1) - (1.3) with

v replaced by v and f 0 0. If we denote the vorticity by
o

" Fx-a - - u2  then a calculation gives

-vhw + u.Vw - 0 in n

so that w satisfies a two-sided maximum principle. If (u n}n= are

solutions of (1.1) - (1.3) with v replaced by v , then
1 n

W n = Tv- - - (un) 2
lvIf Tx2 (nil a

satisfies a two-sided maximum principle in n: if A is an open subset of

0, then the maximum and minimum values of W on A occur on 3A. Although
n

2 a ft a -
n is bounded in L () and converges weakly to -W - Vl - j- v 2 ' this

is not enough to prove results analogous to Theorem 3.2 for w; we would need

some control on derivatives of .n

If (v,p) is a weak solution to the steady Euler equations in Q with

v e H(S() (and v is not necessarily a limit of Navier-Stokes solutions),

then the total head pressure * e q(), q e (1,2), whence ; e Lq(A) for

(all q e [1,ol. By using the averaging methods of Gilbarg and Weinberger 15),

-17-
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(61 for the pressUre p, one can show that p 6 C(ia) and V(X'Y) *0 S

(xy) + 00. If we know in addition that Theorem 3.2 and the remark after it

hold, then ws have e 7 La). it is not known if # e cWb).
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